Surgical drilling to place dental implants in the mandible and maxilla is associated high risk of iatrogenic injuries to inferior alveolar nerve and maxillary sinus. Real-time tissue margin sensing at the drill-tip using electrical impedance spectroscopy (EIS) could reduce this risk by providing feedback to surgeons. Studies with saline analogues, ex-vivo tissues, in-situ tissues and computer models have been previously conducted to evaluate these impedance sensors. Understanding in-vivo electrical properties of tissues in the mandible and maxilla is critical to further develop the sensor and tissue margin sensing algorithms. In this paper, we propose an in-vivo animal model using pigs and discuss methods to test the sensor. Intra-operative imaging and optical tracking systems to assist in surgical navigation are described. The process of registering imaging and tracking information to localize impedance measurement sites within the anatomy are detailed. Results from one in-vivo case of drilling through the mandible are presented and discussed. Clinical Relevance— This model is crucial for characterizing in-vivo electrical properties of mandibular and maxillary tissues encountered during dental implant surgical drilling and for translating bioimpedance sensing drill technology to clinical space.
Learn more about the Medical Research ISX-3 impedance analyzer