Since the early discovery of a black-smoker complex in 1978 on the East Pacific Rise at 21°N, speculations and expectations have been driven about the potential and perspectives of mining seafloor massive sulfide (SMS) deposits in the deep-ocean. With a worldwide accelerating industrialization, emerging markets, increased commodity prices and metal demand, and advancements in deep-water mining and extraction technologies, mining of SMS may become economically feasible in the near future (Kowalczyk, 2008). However, we still know little about the resource potential of SMS deposits, and the development of geophysical methods for an assessment of their spatial extent, composition, and inner structure is crucial to derive a proper assessment of their economic value. Novel geophysical mapping techniques and exploration strategies are required to locate extinct and buried clusters of SMS deposits, away from the active vent fields and of larger economic potential, but are difficult to find and sample by conventional methods.