A Fidelity-Embedded Regularization Method for Robust Electrical Impedance Tomography

Electrical impedance tomography (EIT) provides functional images of an electrical conductivity distribution inside the human body. Since the 1980s, many potential clinical applications have arisen using inexpensive portable EIT devices. EIT acquires multiple trans-impedance measurements across the body from an array of surface electrodes around a chosen imaging slice. The conductivity image reconstruction from the measured data is a fundamentally ill-posed inverse problem notoriously vulnerable to measurement noise and artifacts. Most available methods invert the ill-conditioned sensitivity or the Jacobian matrix using a regularized least-squares data-fitting technique. Their performances rely on the regularization parameter, which controls the trade-off between fidelity and robustness. For clinical applications of EIT, it would be desirable to develop a method achieving consistent performance over various uncertain data, regardless of the choice of the regularization parameter. Based on the analysis of the structure of the Jacobian matrix, we propose a fidelity-embedded regularization (FER) method and a motion artifact reduction filter. Incorporating the Jacobian matrix in the regularization process, the new FER method with the motion artifact reduction filter offers stable reconstructions of high-fidelity images from noisy data by taking a very large regularization parameter value. The proposed method showed practical merits in experimental studies of chest EIT imaging.

For questions or comments please leave us a message.

TOP

Our website uses cookies and thereby collects information about your visit to improve our website (by analyzing), show you Social Media content and relevant advertisements. Please see our cookies page for furher details or agree by clicking the 'Accept' button.

Cookie settings

Below you can choose which kind of cookies you allow on this website. Click on the "Save cookie settings" button to apply your choice.

FunctionalOur website uses functional cookies. These cookies are necessary to let our website work.

AnalyticalOur website uses analytical cookies to make it possible to analyze our website and optimize for the purpose of a.o. the usability.

Social mediaOur website places social media cookies to show you 3rd party content like YouTube and FaceBook. These cookies may track your personal data.

AdvertisingOur website places advertising cookies to show you 3rd party advertisements based on your interests. These cookies may track your personal data.

OtherOur website places 3rd party cookies from other 3rd party services which aren't Analytical, Social media or Advertising.