Detection of needle to nerve contact based on electric bioimpedance and machine learning methods

In an ongoing project for electrical impedance-based needle guidance we have previously showed in an animal model that intraneural needle positions can be detected with bioimpedance measurement. To enhance the power of this method we in this study have investigated whether an early detection of the needle only touching the nerve also is feasible. Measurement of complex impedance during needle to nerve contact was compared with needle positions in surrounding tissues in a volunteer study on 32 subjects. Classification analysis using Support-Vector Machines demonstrated that discrimination is possible, but that the sensitivity and specificity for the nerve touch algorithm not is at the same level of performance as for intra-neural detection.

For questions or comments please leave us a message.

TOP

Our website uses cookies and thereby collects information about your visit to improve our website (by analyzing), show you Social Media content and relevant advertisements. Please see our cookies page for furher details or agree by clicking the 'Accept' button.

Cookie settings

Below you can choose which kind of cookies you allow on this website. Click on the "Save cookie settings" button to apply your choice.

FunctionalOur website uses functional cookies. These cookies are necessary to let our website work.

AnalyticalOur website uses analytical cookies to make it possible to analyze our website and optimize for the purpose of a.o. the usability.

Social mediaOur website places social media cookies to show you 3rd party content like YouTube and FaceBook. These cookies may track your personal data.

AdvertisingOur website places advertising cookies to show you 3rd party advertisements based on your interests. These cookies may track your personal data.

OtherOur website places 3rd party cookies from other 3rd party services which aren't Analytical, Social media or Advertising.