Electrical Impedance Properties of Deep Brain Stimulation Electrodes during Long-Term In-Vivo Stimulation in the Parkinson Model of the Rat

Deep brain stimulation (DBS) is an invasive therapeutic option for patients with Parkinson’s disease (PD) but the mechanisms behind it are not yet fully understood. Animal models are essential for basic DBS research, because cell based in-vitro techniques are not complex enough. However, the geometry difference between rodents and humans implicates transfer problems of the stimulation conditions. For rodents, the development of miniaturized mobile stimulators and adapted electrodes are desirable. We implanted uni- and bipolar platinum/iridium electrodes in rats and were able to establish chronical instrumentation of freely moving rats (3 weeks). We measured the impedance of unipolar electrodes in-vivo to characterize the influence of electrochemical processes at the electrode-tissue interface. During the encapsulation process, the real part of the electrode impedance at 10 kHz doubled after 12 days and increased almost 10 times after 22 days. An outlook is given on the quantification of the DBS effect by sensorimotor behavioral tests

For questions or comments please leave us a message.

TOP

Our website uses cookies and thereby collects information about your visit to improve our website (by analyzing), show you Social Media content and relevant advertisements. Please see our cookies page for furher details or agree by clicking the 'Accept' button.

Cookie settings

Below you can choose which kind of cookies you allow on this website. Click on the "Save cookie settings" button to apply your choice.

FunctionalOur website uses functional cookies. These cookies are necessary to let our website work.

AnalyticalOur website uses analytical cookies to make it possible to analyze our website and optimize for the purpose of a.o. the usability.

Social mediaOur website places social media cookies to show you 3rd party content like YouTube and FaceBook. These cookies may track your personal data.

AdvertisingOur website places advertising cookies to show you 3rd party advertisements based on your interests. These cookies may track your personal data.

OtherOur website places 3rd party cookies from other 3rd party services which aren't Analytical, Social media or Advertising.