Electrical impedance tomography in on-chip integrated microtubular fluidic channels

A tubular electrical impedance tomograph (EIT) with micrometric dimensions was fabricated by using rolledup nanotechnology. This approach gives access to EIT devices with tunable sizes in the sub-100 µm range. EIT images of silicon dioxide microparticles were obtained as proof of principle. These devices could enable the impedimetric analysis of biological micro-scale objects, such as single cells or small cell clusters.
In recent years, there has been a growing interest in the analysis of single cells. Single-cell studies give valuable insights in the variability of biological cells in one and the same cell population, and can give new information about their fundamental properties.[1] Impedance measurements are especially well-suited for these analyses, as they are labelfree and non-destructive. Tomographic measurements in particular are of interest since they can additionally provide spatial information in real time. EIT studies of single cells call for appropriate measurement chambers, whose sizes should be similar to that of the object to be studied. This can easily be achieved using rolled-up nanotechnology.

  • authorsSonja M. Weiz, Mariana Medina-Sánchez, Kyounghun Lee, Oliver G. Schmidt
  • sourceBoyle, Alistair, Halter, Ryan, Murphy, Ethan, & Adler, Andy. (2017, June 21). Proceedings of the 18th International Conference on Biomedical Applications of Electrical Impedance Tomography. Zenodo.
  • YEAR 2017
  • CATEGORY
  • TAGS , , , , ,

For questions or comments please leave us a message.

TOP

Our website uses cookies and thereby collects information about your visit to improve our website (by analyzing), show you Social Media content and relevant advertisements. Please see our cookies page for furher details or agree by clicking the 'Accept' button.

Cookie settings

Below you can choose which kind of cookies you allow on this website. Click on the "Save cookie settings" button to apply your choice.

FunctionalOur website uses functional cookies. These cookies are necessary to let our website work.

AnalyticalOur website uses analytical cookies to make it possible to analyze our website and optimize for the purpose of a.o. the usability.

Social mediaOur website places social media cookies to show you 3rd party content like YouTube and FaceBook. These cookies may track your personal data.

AdvertisingOur website places advertising cookies to show you 3rd party advertisements based on your interests. These cookies may track your personal data.

OtherOur website places 3rd party cookies from other 3rd party services which aren't Analytical, Social media or Advertising.