Mathematical model of conductive fabric-based flexible pressure sensor

Mathematical model of conductive fabric-based flexible pressure sensor

This paper proposes a mathematical model of a pressure-sensitive conductive fabric sensor, which adopts the technique of electrical impedance tomography (EIT) with a composite fabric being capable of changing its effective electrical property due to an applied pressure. We model the composite fabric from an electrically conductive yarn and a sponge-like non-conductive fabric with high pore density, and the conductive yarn is woven in a wavy pattern to possess a pressure-sensitive conductive property, in the sense of homogenization theory. We use a simplified version of EIT technique to image the pressure distribution associated with the conductivity perturbation. A mathematical ground for the effective conductivity in one-direction is provided. We conduct an experiment to test the feasibility of the proposed pressure sensor.

Latest Products

  • LCR-1 meter
    LCR-1

    You want to use impedance spectroscopy and not spend a fortune? You like it simple, but still need precision and speed? The compact ISX-3 impedance analyzer is your solution.

    In standard configuration the ISX-3 is equipped with Sciospec’s IF frontend with 4-port BNC interface supporting simple 2 point measurements, as well as 3 and 4 electrode configurations. Within the measurement range from 100 mHz to 10 MHz (extendable to 40 or 100 MHz) it covers a dynamic range of 300dB (mOhm…TOhm) with a base precision of 0.01%.

    Learn more
  • Medical Research ISX-3

    scalable impedance analyzer with medical grade safety features

    Learn more
  • CSX-64

    64-channel impedance measurement system

    Learn more

Get in touch with us

+49 3425 88399 00

info@sciospec.com

Sciospec Scientific Instruments GmbH
Leipziger Str. 43b, 04828 Bennewitz, Germany