Import, process and visualize Sciospec EIT data in the open-source software EIDORS by taking the example of a standard phantom experiment
From research targeted instruments like the EIT16 to fully customized OEM products for bioanalytical, medical and industrial applications Sciospec provides highly specialized solutions for electrical impedance tomography. Flexible channel configurations, frequency sweep modes, scalability up to several hundred channels and broad options for extension through sensor adapters, add-on modules and more make Sciospec EIT systems suitable for a multitude of ambitious applications.
EIDORS (Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software) is a free software for EIT image reconstruction and processing. EIDORS is based on MATLAB, but also works with the free open source alternative Octave and is broadly used and supported by the academic community and EIT experts worldwide. The Sciospec EIT16 – 16 channel EIT device – is a full featured high bandwidth EIT system for ambitious research applications. The EIT data generated using a Sciospec EIT system, like the EIT16, and corresponding Sciospec software can be imported, processed and visualized in the Matlab based free software EIDORS. Sciospec provides appropriate Matlab code examples and guidance to help you getting started with this constellation. This Application Note demonstrates how to import and perform EIT image reconstruction in EIDORS using the Matlab code provided by Sciospec. Some sample data were generated in a standard phantom experiment using the Sciospec EIT16 and corresponding Sciospec software.
Frequency-difference phantom experiment
The goal is to discriminate admittivity anomaly from background which consists of high-contrast materials. To remove the influence of the inhomogeneous background, linear combinations of multi-frequency EIT (mfEIT) data are used to produce contrast images.
Multiple backgrounds subtraction method is used for the linear combinations of mfEIT data.
Time-difference phantom experiment
Time-difference EIT(tdEIT) is to recover the time change of conductivity distribution using the time change of voltage data.
User made java GUI can control Sciospec EIT device to perform tdEIT experiments.
To perform tdEIT, we put insulating glass in the circular saline tank. The reference voltage data is measured in the absence of the glass. The author made reconstruction algorithm is used to locate the position of the glass.